Metric-locating-dominating sets of graphs for constructing related subsets of vertices
Antonio González,
Carmen Hernando and
Mercè Mora
Applied Mathematics and Computation, 2018, vol. 332, issue C, 449-456
Abstract:
A dominating set S of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of S, and the minimum cardinality of such a set is called the metric-location-domination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: resolving sets, dominating sets, locating-dominating sets and doubly resolving sets. We first characterize the extremal trees of the bounds that naturally involve metric-location-domination number, metric dimension and domination number. Then, we prove that there is no polynomial upper bound on the location-domination number in terms of the metric-location-domination number, thus extending a result of Henning and Oellermann. Finally, we show different methods to transform metric-locating-dominating sets into locating-dominating sets and doubly resolving sets. Our methods produce new bounds on the minimum cardinalities of all those sets, some of them concerning parameters that have not been related so far.
Keywords: Metric-locating-dominating set; Resolving set; Dominating set; Locating-dominating set; Doubly resolving set (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318302261
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:332:y:2018:i:c:p:449-456
DOI: 10.1016/j.amc.2018.03.053
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().