EconPapers    
Economics at your fingertips  
 

Generalized two-step Maruyama methods for stochastic differential equations

Quanwei Ren and Hongjiong Tian

Applied Mathematics and Computation, 2018, vol. 332, issue C, 48-57

Abstract: In this paper, we propose generalized two-step Maruyama methods for solving Itô stochastic differential equations. Numerical analysis concerning consistency, convergence and numerical stability in the mean-square sense is presented. We derive sufficient and necessary conditions for linear mean-square stability of the generalized two-step Maruyama methods. We compare the stability region of the generalized two-step Maruyama methods of Adams type with that of the corresponding two-step Maruyama methods of Adams type and show that our proposed methods have better linear mean-square stability. A numerical example is given to confirm our theoretical results.

Keywords: Stochastic differential equation; Mean-square consistency; Mean-square convergence; Mean-square stability; Generalized two-step Maruyama method; Adams method (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318301681
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:332:y:2018:i:c:p:48-57

DOI: 10.1016/j.amc.2018.03.003

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:332:y:2018:i:c:p:48-57