EconPapers    
Economics at your fingertips  
 

Fully discrete spectral methods for solving time fractional nonlinear Sine–Gordon equation with smooth and non-smooth solutions

Zeting Liu, Shujuan Lü and Fawang Liu

Applied Mathematics and Computation, 2018, vol. 333, issue C, 213-224

Abstract: We consider the initial boundary value problem of the time fractional nonlinear Sine–Gordon equation and the fractional derivative is described in Caputo sense with the order α(1 < α < 2). Two fully discrete schemes are developed based on Legendre spectral approximation in space and finite difference discretization in time for smooth solutions and non-smooth solutions, respectively. Numerical stability and convergence are analysed. Numerical experiments for both the fully discrete schemes are presented to confirm our theoretical analysis.

Keywords: Time fractional nonlinear Sine–Gordon equation; Legendre spectral method; Stability and convergence; Caputo derivative; Smooth and non-smooth solutions (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031830242X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:333:y:2018:i:c:p:213-224

DOI: 10.1016/j.amc.2018.03.069

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:333:y:2018:i:c:p:213-224