Accelerating the convergence speed of iterative methods for solving nonlinear systems
Xiao-Yong Xiao and
Hong-Wei Yin
Applied Mathematics and Computation, 2018, vol. 333, issue C, 8-19
Abstract:
In this paper, for solving systems of nonlinear equations, we develop a family of two-step third order methods and introduce a technique by which the order of convergence of many iterative methods can be improved. Given an iterative method of order p ≥ 2 which uses the extended Newton iteration as a predictor, a new method of order p+2 is constructed by introducing only one additional evaluation of the function. In addition, for an iterative method of order p ≥ 3 using the Newton iteration as a predictor, a new method of order p+3 can be extended. Applying this procedure, we develop some new efficient methods with higher order of convergence. For comparing these new methods with the ones from which they have been derived, we discuss the computational efficiency in detail. Several numerical examples are given to justify the theoretical results by the asymptotic behaviors of the considered methods.
Keywords: Systems of nonlinear equations; Modified Newton method; Order of convergence; Higher order methods; Computational efficiency (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318302893
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:333:y:2018:i:c:p:8-19
DOI: 10.1016/j.amc.2018.03.108
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().