EconPapers    
Economics at your fingertips  
 

A modified online sequential extreme learning machine for building circulation fluidized bed boiler's NOx emission model

Yunpeng Ma, Peifeng Niu, Shanshan Yan and Guoqiang Li

Applied Mathematics and Computation, 2018, vol. 334, issue C, 214-226

Abstract: In the last decade, the online sequential extreme learning machine (OS-ELM) has become an effective online modeling tool for the regression problem and time series prediction areas. However, the random initialization input-weights remain unchanged when the new large testing data arrive, which maybe reduce its training accuracy and generalization ability gradually. In this paper, based on the conventional OS-ELM, a kind of input data sample increment online sequential extreme learning machine is proposed, namely SIOS-ELM. As its name suggests, the sample increment is the actual error value between the present training input data sample and the new arriving input data sample. In SIOS-ELM, the parameters of hidden layer nodes (the input-weights and threshold values of hidden layer) are calculated in real time based on the sample increment by twice least square method when the new input data arrives one by one or chunk by chunk. In addition, the output weights are adjusted online as the OS-ELM. Compared with OS-ELM and its variants on benchmark problems, the proposed SIOS-ELM possesses better model accuracy and generalization ability. Additionally, the SIOS-ELM is applied to build the NOx emissions model of one 330 MW circulating fluidized bed boiler. The experiment result reveals that the SIOS-ELM is an effective online machine learning tool.

Keywords: Online sequential extreme learning machine; Sample increment; Least square method; Circulating fluidized bed boiler; NOx emission model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318301759
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:334:y:2018:i:c:p:214-226

DOI: 10.1016/j.amc.2018.03.010

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:334:y:2018:i:c:p:214-226