EconPapers    
Economics at your fingertips  
 

Iterative techniques for the initial value problem for Caputo fractional differential equations with non-instantaneous impulses

Ravi Agarwal, S. Hristova and O’Regan, D.

Applied Mathematics and Computation, 2018, vol. 334, issue C, 407-421

Abstract: Two types of algorithms for constructing monotone successive approximations for solutions to initial value problems for a scalar nonlinear Caputo fractional differential equation with non-instantaneous impulses are given. The impulses start abruptly at some points and their action continue on given finite intervals. Both algorithms are based on the application of lower and upper solutions to the problem. The first one is a generalization of the monotone iterative technique and it requires an application of the Mittag-Leffler function with one and two parameters. The second one is easier from a practical point of view and is applicable when the right hand sides of the equation are monotone. We prove that the functional sequences are convergent and their limits are minimal and maximal solutions of the problem. An example is given to illustrate the results.

Keywords: Non-instantaneous impulses; Lower solution; Upper solutions; Monotone iterative technique (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318303084
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:334:y:2018:i:c:p:407-421

DOI: 10.1016/j.amc.2018.04.004

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:334:y:2018:i:c:p:407-421