An inverse time-dependent source problem for a time–space fractional diffusion equation
Y. S. Li and
T. Wei
Applied Mathematics and Computation, 2018, vol. 336, issue C, 257-271
Abstract:
This paper is devoted to identify a time-dependent source term in a time–space fractional diffusion equation by using the usual initial and boundary data and an additional measurement data at an inner point. The existence and uniqueness of a weak solution for the corresponding direct problem with homogeneous Dirichlet boundary condition are proved. We provide the uniqueness and a stability estimate for the inverse time-dependent source problem. Based on the separation of variables, we transform the inverse source problem into a first kind Volterra integral equation with the source term as the unknown function and then show the ill-posedness of the problem. Further, we use a boundary element method combined with a generalized Tikhonov regularization to solve the Volterra integral equation of the fist kind. The generalized cross validation rule for the choice of regularization parameter is applied to obtain a stable numerical approximation to the time-dependent source term. Numerical experiments for six examples in one-dimensional and two-dimensional cases show that our proposed method is effective and stable.
Keywords: Inverse source problem; Time–space fractional diffusion equation; Tikhonov regularization method; Boundary element method (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318304193
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:336:y:2018:i:c:p:257-271
DOI: 10.1016/j.amc.2018.05.016
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().