Oscillation of third-order differential equations with noncanonical operators
Jozef Džurina and
Irena Jadlovská
Applied Mathematics and Computation, 2018, vol. 336, issue C, 394-402
Abstract:
New oscillation criteria for third-order delay differential equations with noncanonical operators are presented. Contrary to existing results, oscillation of the studied equation is attained via only two conditions. Our criteria not only improve, extend and significantly simplify existing ones, but the newly proposed approach could hopefully serve as a reference in the less-developed theory of noncanonical equations of higher-order. The importance of the results obtained is illustrated via Euler-type equations.
Keywords: Linear differential equation; Delay; Third-order; Noncanonical operators; Oscillation (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318303618
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:336:y:2018:i:c:p:394-402
DOI: 10.1016/j.amc.2018.04.043
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().