EconPapers    
Economics at your fingertips  
 

Boundary integral equations for the exterior Robin problem in two dimensions

Olha Ivanyshyn Yaman and Gazi Özdemir

Applied Mathematics and Computation, 2018, vol. 337, issue C, 25-33

Abstract: We propose two methods based on boundary integral equations for the numerical solution of the planar exterior Robin boundary value problem for the Laplacian in a multiply connected domain. The methods do not require any a-priori information on the logarithmic capacity. Investigating the properties of the integral operators and employing the Riesz theory we prove that the obtained boundary integral equations for both methods are uniquely solvable. The feasibility of the numerical methods is illustrated by examples obtained via solving the integral equations by the Nyström method based on weighted trigonometric quadratures on an equidistant mesh.

Keywords: Exterior Robin problem; Boundary integral equations; Laplace equation (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318303734
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:337:y:2018:i:c:p:25-33

DOI: 10.1016/j.amc.2018.04.055

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:337:y:2018:i:c:p:25-33