EconPapers    
Economics at your fingertips  
 

Approximation of the modified error function

Andrea N. Ceretani, Natalia N. Salva and Domingo A. Tarzia

Applied Mathematics and Computation, 2018, vol. 337, issue C, 607-617

Abstract: In this article, we obtain explicit approximations of the modified error function introduced in Cho and Sunderland (1974), as part of a Stefan problem with a temperature-dependent thermal conductivity. This function depends on a parameter δ, which is related to the thermal conductivity in the original phase-change process. We propose a method to obtain approximations, which is based on the assumption that the modified error function admits a power series representation in δ. Accurate approximations are obtained through functions involving error and exponential functions only. For the special case in which δ assumes small positive values, we show that the modified error function presents some characteristic features of the classical error function, such as monotony, concavity, and boundedness. Moreover, we prove that the modified error function converges to the classical one when δ goes to zero.

Keywords: Modified error function; Error function; Phase-change problem; Temperature-dependent thermal conductivity; Nonlinear second order ordinary differential equation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318304715
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:337:y:2018:i:c:p:607-617

DOI: 10.1016/j.amc.2018.05.054

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:337:y:2018:i:c:p:607-617