EconPapers    
Economics at your fingertips  
 

Empirical likelihood based inference for generalized additive partial linear models

Zhuoxi Yu, Kai Yang and Milan Parmar

Applied Mathematics and Computation, 2018, vol. 339, issue C, 105-112

Abstract: Empirical-likelihood based inference for the parameters in generalized additive partial linear models (GAPLM) is investigated. With the use of the polynomial spline smoothing for estimation of nonparametric functions, an estimated empirical likelihood ratio statistic based on the quasi-likelihood equation is proposed. We show that the resulting statistic is asymptotically standard chi-squared distributed and the confidence regions for the parametric components are constructed. Some simulations are conducted to illustrate the proposed methods.

Keywords: Generalized Additive partial linear models; Empirical likelihood; Quasi-likelihood equation; χ2 distribution; Confidence region (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318305393
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:339:y:2018:i:c:p:105-112

DOI: 10.1016/j.amc.2018.06.050

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:105-112