EconPapers    
Economics at your fingertips  
 

New multiplicative perturbation bounds for the generalized polar decomposition

Na Liu, Wei Luo and Qingxiang Xu

Applied Mathematics and Computation, 2018, vol. 339, issue C, 259-271

Abstract: Some new Frobenius norm bounds of the unique solution to certain structured Sylvester equation are derived. Based on the derived norm upper bounds, new multiplicative perturbation bounds are provided both for subunitary polar factors and positive semi-definite polar factors. Some previous results are then improved.

Keywords: Structured Sylvester equation; Multiplicative perturbation; Generalized polar decomposition; Frobenius norm bound; Moore–Penrose inverse (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318305812
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:339:y:2018:i:c:p:259-271

DOI: 10.1016/j.amc.2018.07.023

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:259-271