EconPapers    
Economics at your fingertips  
 

Estimation distribution algorithms on constrained optimization problems

Shujun Gao and Clarence W. de Silva

Applied Mathematics and Computation, 2018, vol. 339, issue C, 323-345

Abstract: Estimation distribution algorithm (EDA) is an evolution technique that uses sampling to generate the offspring. Most developed EDAs focus on solving the optimization problems which only have the constraints of variable boundaries. In this paper, EDAs are proposed for solving the constrained optimization problems (COPs) involving various types of constraints. In particular, a modified extreme elitism selection method is designed for EDAs to handle the constraints. This selection extrudes the role of some top best solutions to pull the mean vector of the Gaussian distribution towards these best solutions and makes EDAs form a primary evolutionary direction. The EDAs based on five different Gaussian distribution with this selection are evaluated using a set of benchmark functions and some engineering design problems. It is found that for solving these problems, the EDA that is based on a single multivariate Gaussian distribution model with the modified extreme elitism selection outperforms the other EDAs and some state-of-the-art techniques.

Keywords: Estimation distribution algorithms; Gaussian distribution; Constrained optimization problems; Top best solutions; Extreme elitism selection (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318306027
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:339:y:2018:i:c:p:323-345

DOI: 10.1016/j.amc.2018.07.037

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:323-345