EconPapers    
Economics at your fingertips  
 

D-convergence and conditional GDN-stability of exponential Runge–Kutta methods for semilinear delay differential equations

Jingjun Zhao, Rui Zhan and Yang Xu

Applied Mathematics and Computation, 2018, vol. 339, issue C, 45-58

Abstract: This paper is concerned with exponential Runge–Kutta methods with Lagrangian interpolation (ERKLMs) for semilinear delay differential equations (DDEs). Concepts of exponential algebraic stability and conditional GDN-stability are introduced. D-convergence and conditional GDN-stability of ERKLMs for semilinear DDEs are investigated. It is shown that exponentially algebraically stable and diagonally stable ERKLMs with stage order p, together with a Lagrangian interpolation of order q (q ≥ p), are D-convergent of order p. It is also shown that exponentially algebraically stable and diagonally stable ERKLMs are conditionally GDN-stable. Some examples of exponentially algebraically stable and diagonally stable ERKLMs of stage order one and two are given, and numerical experiments are presented to illustrate the theoretical results.

Keywords: Exponential Runge–Kutta methods with Lagrangian interpolation; Conditional GDN-stability; D-convergence; Semilinear delay differential equations (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318305514
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:339:y:2018:i:c:p:45-58

DOI: 10.1016/j.amc.2018.07.001

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:339:y:2018:i:c:p:45-58