An algebraic perspective on integer sparse recovery
Lenny Fukshansky,
Deanna Needell and
Benny Sudakov
Applied Mathematics and Computation, 2019, vol. 340, issue C, 31-42
Abstract:
Compressed sensing is a relatively new mathematical paradigm that shows a small number of linear measurements are enough to efficiently reconstruct a large dimensional signal under the assumption the signal is sparse. Applications for this technology are ubiquitous, ranging from wireless communications to medical imaging, and there is now a solid foundation of mathematical theory and algorithms to robustly and efficiently reconstruct such signals. However, in many of these applications, the signals of interest do not only have a sparse representation, but have other structure such as lattice-valued coefficients. While there has been a small amount of work in this setting, it is still not very well understood how such extra information can be utilized during sampling and reconstruction. Here, we explore the problem of integer sparse reconstruction, lending insight into when this knowledge can be useful, and what types of sampling designs lead to robust reconstruction guarantees. We use a combination of combinatorial, probabilistic and number-theoretic methods to discuss existence and some constructions of such sensing matrices with concrete examples. We also prove sparse versions of Minkowski’s Convex Body and Linear Forms theorems that exhibit some limitations of this framework.
Keywords: Sparse recovery; Integer lattice; Random matrices; Algebraic numbers; Geometry of numbers (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318306465
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:340:y:2019:i:c:p:31-42
DOI: 10.1016/j.amc.2018.08.007
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().