EconPapers    
Economics at your fingertips  
 

Compact structure-preserving approach to solitary wave in shallow water modeled by the Rosenau-RLW equation

B. Wongsaijai, T. Mouktonglang, N. Sukantamala and K. Poochinapan

Applied Mathematics and Computation, 2019, vol. 340, issue C, 84-100

Abstract: A mass-preserving scheme, a nonlinear algorithm based on modification of a finite difference method to the Rosenau-RLW equation, is proposed subject to homogeneous boundary conditions. The key feature of the method for improving the accuracy of approximate solutions is to develop a compact higher-order scheme together with an iterative algorithm for solving the nonlinear implicit scheme. The derivatives for space discretization are approximated by using the algorithm dealing with a five-point stencil. In addition, a three-level average difference technique is used to perform time discretization. The conservation of mass and both the existence and uniqueness of the numerical solution are proved. The stability and convergence of the numerical solution with order O(τ4+τ2h2+h4) are also confirmed. For efficiency analysis, numerical results show that the computational efficiency of the compact scheme is much higher than that of non-compact schemes. Moreover, long-time behavior is also used to validate the capability of the present method.

Keywords: Solitary wave; Shallow water; Rosenau-RLW equation; Compact finite difference method (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318304971
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:340:y:2019:i:c:p:84-100

DOI: 10.1016/j.amc.2018.06.009

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:340:y:2019:i:c:p:84-100