EconPapers    
Economics at your fingertips  
 

Determination of endometrial carcinoma with gene expression based on optimized Elman neural network

Hongping Hu, Haiyan Wang, Yanping Bai and Maoxing Liu

Applied Mathematics and Computation, 2019, vol. 341, issue C, 204-214

Abstract: Endometrial carcinoma is a life-threatening disease that causes serious damage to the women’s health. This paper discusses classifications of 87 endometrial samples with gene expressions that are cancerous or cancer-free. Every sample has 5 indicators. For every indicator, the corresponding genes of the missing data are deleted and the signal noise ratios (SNRs) are calculated to filter the irrelevant genes. Then the obtained new samples use the principle component analysis to decrease the dimensions. Finally 10 random samples are selected to be the testing samples for classification. Thus the classification accuracy rate is given for every indicator. Based on cancer related to 5 indicators, the combination of the 5 indicators is used to classify to make new 87 endometrial samples as cancerous or cancer-free. We repeatedly process these new samples by deleting the missing data, filtering the irrelevant genes with SNRs, and decreasing the dimensions with PCA, an obtain the new data. The proposed method is that the particle swarm algorithm (PSO) and the grey wolf optimizer (GWO) is combined to optimize the parameters of Elman recurrent neural network (ERNN), written as PSOGWO-ERNN. The results show that PSOGWO-ERNN is superior to the single ERNN, ERNN optimized by PSO or GWO (PSO-ERNN or GWO-ERNN), and the classification accuracy rate of PSOGWO-ERNN reaches 88.8506%. The results also show that the neural networks optimized by some swarm intelligence algorithms are more useful for classification.

Keywords: Elman neural network; Endometrial carcinoma; Gene expression; Grey wolf optimizer; Leave-one-out cross validation; Particular swarm optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031830777X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:341:y:2019:i:c:p:204-214

DOI: 10.1016/j.amc.2018.09.005

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:341:y:2019:i:c:p:204-214