A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients
Yuan-Ming Wang and
Lei Ren
Applied Mathematics and Computation, 2019, vol. 342, issue C, 71-93
Abstract:
A high-order compact finite difference method is proposed for solving a class of time-fractional sub-diffusion equations. The diffusion coefficient of the equation may be spatially variable and the time-fractional derivative is in the Caputo sense with the order α ∈ (0, 1). The Caputo time-fractional derivative is discretized by a (3−α) th-order numerical formula (called the L2 formula here) which is constructed by piecewise quadratic interpolating polynomials but does not require any sub-stepping scheme for the approximation at the first-time level. The variable coefficient spatial differential operator is approximated by a fourth-order compact finite difference operator. By developing a technique of discrete energy analysis, a full theoretical analysis of the stability and convergence of the method is carried out for the general case of variable coefficient and for all α ∈ (0, 1). The optimal error estimate is obtained in the L2 norm and shows that the proposed method has the temporal (3−α) th-order accuracy and the spatial fourth-order accuracy. Further approximations are also considered for enlarging the applicability of the method while preserving its high-order accuracy. Applications are given to three model problems, and numerical results are presented to demonstrate the theoretical analysis results.
Keywords: Fractional sub-diffusion equation; Variable coefficient; Compact difference method; High-order convergence; Energy method (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318307793
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:342:y:2019:i:c:p:71-93
DOI: 10.1016/j.amc.2018.09.007
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().