EconPapers    
Economics at your fingertips  
 

Second-order consensus protocols based on transformed d-path Laplacians

Lucia Valentina Gambuzza, Mattia Frasca and Ernesto Estrada

Applied Mathematics and Computation, 2019, vol. 343, issue C, 183-194

Abstract: The Laplacian of a graph mathematically formalizes the interactions occurring between nodes/agents connected by a link. Its extension to account for the indirect peer influence through longer paths, weighted as a function of their length, is represented by the notion of transformed d-path Laplacians. In this paper, we propose a second-order consensus protocol based on these matrices and derive criteria for the stability of the error dynamics, which also consider the presence of a communication delay. We show that the new consensus protocol is stable in a wider region of the control gains, but admits a smaller maximum delay than the protocol based on the classical Laplacian. We show numerical examples to illustrate our theoretical results.

Keywords: Consensus,; d-path Laplacians; Communication delay (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318308166
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:343:y:2019:i:c:p:183-194

DOI: 10.1016/j.amc.2018.09.038

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:343:y:2019:i:c:p:183-194