Nordhaus–Gaddum type results for graph irregularities
Yuede Ma,
Shujuan Cao,
Yongtang Shi,
Matthias Dehmer and
Chengyi Xia
Applied Mathematics and Computation, 2019, vol. 343, issue C, 268-272
Abstract:
A graph whose vertices have the same degree is called regular. Otherwise, the graph is irregular. In fact, various measures of irregularity have been proposed and examined. For a given graph G=(V,E) with V={v1,v2,…,vn} and edge set E(G), di is the vertex degree where 1 ≤ i ≤ n. The irregularity of G is defined by irr(G)=∑vivj∈E(G)|di−dj|. A similar measure can be defined by irr2(G)=∑vivj∈E(G)(di−dj)2. The total irregularity of G is defined by irrt(G)=12∑vi,vj∈V(G)|di−dj|. The variance of the vertex degrees is defined var(G)=1n∑i=1ndi2−(2mn)2. In this paper, we present some Nordhaus–Gaddum type results for these measures and draw conclusions.
Keywords: Regular graph; Graph irregularity; Nordhaus–Gaddum; Degree; Zagreb index (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318308440
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:343:y:2019:i:c:p:268-272
DOI: 10.1016/j.amc.2018.09.057
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().