EconPapers    
Economics at your fingertips  
 

Group analysis of variable coefficients heat and mass transfer equations with power nonlinearity of thermal diffusivity

Irina V. Stepanova

Applied Mathematics and Computation, 2019, vol. 343, issue C, 57-66

Abstract: The paper presents symmetry analysis of three-dimensional equations of heat and mass transfer in a binary liquid. The system contains three unknown functions related to physical properties of liquid. Supposing thermal diffusivity to be depended on temperature with respect to power law, diffusion and thermal diffusion coefficients are found using of classical Lie symmetry approach. It is shown that the solution of the group classification problem consists of two parts. We obtain different results if we take into account that diffusion coefficient either has the same form as the thermal diffusivity coefficient or it depends on temperature and concentration essentially. Some reductions of the governing equations are constructed with the help of the obtained transformations of dependent and independent variables. New exact solutions of the reduced equations have been found in several cases.

Keywords: Lie symmetry analysis; Group classification problem; Thermodiffusion equations; Transport coefficients; exact solutions (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318308142
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:343:y:2019:i:c:p:57-66

DOI: 10.1016/j.amc.2018.09.036

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:343:y:2019:i:c:p:57-66