Stability in mean for uncertain differential equation with jumps
Rong Gao
Applied Mathematics and Computation, 2019, vol. 346, issue C, 15-22
Abstract:
An uncertain differential equation with jumps is a type of uncertain differential equation driven by Liu process and uncertain renewal process, which is used to model discontinuous systems. Up to now, the stability in measure and almost sure stability for such an equation have been studied. The above two types of stability cannot be applied to all cases, so this paper aims at presenting a concept of stability in mean for an uncertain differential equation with jumps as a supplement. Most important of all, a stability theorem is given for an uncertain differential equation with jumps being stable in mean. And some examples are proposed to show how to use the theorem to judge whether the uncertain differential equation with jumps is stable in mean.
Keywords: Uncertain differential equation; Stability in mean; Uncertainty theory (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318308555
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:346:y:2019:i:c:p:15-22
DOI: 10.1016/j.amc.2018.09.068
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().