EconPapers    
Economics at your fingertips  
 

Variational–hemivariational inequality for a class of dynamic nonsmooth frictional contact problems

Stanisław Migórski and Piotr Gamorski

Applied Mathematics and Computation, 2019, vol. 346, issue C, 465-479

Abstract: In this paper, a dynamic frictional contact problem for viscoelastic materials with long memory is studied. The contact is modeled by a multivalued normal damped response condition with the Clarke generalized gradient of a locally Lipschitz superpotential and the friction is described by a version of the Coulomb law of dry friction with the friction bound depending on the regularized normal stress. The weak formulation of the contact problem is a history-dependent variational–hemivariational inequality for the velocity. A result on the unique weak solvability to this inequality is proved through a recent contribution on evolutionary subdifferential inclusions and a fixed point approach.

Keywords: Variational–hemivariational inequality; Clarke generalized gradient; History-dependent operator; Existence and uniqueness; Coulomb law of dry friction (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318308713
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:346:y:2019:i:c:p:465-479

DOI: 10.1016/j.amc.2018.10.011

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:346:y:2019:i:c:p:465-479