EconPapers    
Economics at your fingertips  
 

Chaos in a predator–prey-based mathematical model for illicit drug consumption

Jean-Marc Ginoux, Roomila Naeck, Yusra Bibi Ruhomally, Muhammad Zaid Dauhoo and Matjaž Perc

Applied Mathematics and Computation, 2019, vol. 347, issue C, 502-513

Abstract: Recently, a mathematical model describing the illicit drug consumption in a population consisting of drug users and non-users has been proposed. The model describes the dynamics of non-users, experimental users, recreational users, and addict users within a population. The aim of this work is to propose a modified version of this model by analogy with the classical predator-prey models, in particular considering non-users as prey and users as predator. Hence, our model includes a stabilizing effect of the growth rate of the prey, and a destabilizing effect of the predator saturation. Functional responses of Verhulst and of Holling type II have been used for modeling these effects. To forecast the marijuana consumption in the states of Colorado and Washington, we used data from Hanley (2013) and a genetic algorithm to calibrate the parameters in our model. Assuming that the population of non-users increases in proportion with the demography, and following the seminal works of Sir Robert May (1976), we use the growth rate of non-users as the main bifurcation parameter. For the state of Colorado, the model first exhibits a limit cycle, which agrees quite accurately with the reported periodic data in Hanley (2013). By further increasing the growth rate of non-users, the population then enters into two chaotic regions, within which the evolution of the variables becomes unpredictable. For the state of Washington, the model also exhibits a periodic solution, which is again in good agreement with observed data. A chaotic region for Washington is likewise observed in the bifurcation diagram. Our research confirms that mathematical models can be a useful tool for better understanding illicit drug consumption, and for guiding policy-makers towards more effective policies to contain this epidemic.

Keywords: Chaos; Nonlinear dynamics; Period-doubling bifurcation; Social mathematics; Illicit drug use (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031830969X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:347:y:2019:i:c:p:502-513

DOI: 10.1016/j.amc.2018.10.089

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:347:y:2019:i:c:p:502-513