Cross-diffusion induced Turing instability for a competition model with saturation effect
Qiang Li,
Zhijun Liu and
Sanling Yuan
Applied Mathematics and Computation, 2019, vol. 347, issue C, 64-77
Abstract:
Competitive behavior, like predation, widely exists in the world which has influences on the dynamics of ecosystems. Though a good knowledge for the patten formation and selection of predator–prey models with diffusion is known in the literature, little is known for that of a diffused competition model. As a result, a competition model with saturation effect and self- and cross-diffusion is proposed and analyzed in this paper. Firstly, by making use of nullcline analysis, we derive the condition of existence and stability of positive equilibrium and prove global stability. Then using the linear stability analysis, the Turing bifurcation critical value and the condition of the occurrence of Turing pattern are obtained when control parameter is selected. Finally, we deduce the amplitude equations around the Turing bifurcation point by using the standard multiple scale analysis. Meanwhile, a series of numerical simulations are given to expand our theoretical analysis. This work shows that cross-diffusion plays a key role in the formation of spatial patterns for competitive model with saturation effect.
Keywords: Competition model; Cross-diffusion; Stability; Turing pattern; Amplitude equation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318309457
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:347:y:2019:i:c:p:64-77
DOI: 10.1016/j.amc.2018.10.071
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().