EconPapers    
Economics at your fingertips  
 

Numerical studies of the Steklov eigenvalue problem via conformal mappings

Weaam Alhejaili and Chiu-Yen Kao

Applied Mathematics and Computation, 2019, vol. 347, issue C, 785-802

Abstract: In this paper, spectral methods based on conformal mappings are proposed to solve the Steklov eigenvalue problem and its related shape optimization problems in two dimensions. To apply spectral methods, we first reformulate the Steklov eigenvalue problem in the complex domain via conformal mappings. The eigenfunctions are expanded in Fourier series so the discretization leads to an eigenvalue problem for coefficients of Fourier series. For shape optimization problem, we use a gradient ascent approach to find the optimal domain which maximizes kth Steklov eigenvalue with a fixed area for a given k. The coefficients of Fourier series of mapping functions from a unit circle to optimal domains are obtained for several different k.

Keywords: Steklov eigenvalues; Extremal eigenvalue problem; Shape optimization; Spectral method; Conformal mapping (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318310221
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:347:y:2019:i:c:p:785-802

DOI: 10.1016/j.amc.2018.11.048

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:347:y:2019:i:c:p:785-802