EconPapers    
Economics at your fingertips  
 

The generalized 3-connectivity of the Mycielskian of a graph

Shasha Li, Yan Zhao, Fengwei Li and Ruijuan Gu

Applied Mathematics and Computation, 2019, vol. 347, issue C, 882-890

Abstract: The generalized k-connectivity κk(G) of a graph G is a generalization of the concept of the traditional connectivity, which can serve for measuring the capability of a graph G to connect any k vertices in G. In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed a graph transformation that transforms a graph G into a new graph μ(G), which is called the Mycielskian of G. In this paper, we investigate the relation between the generalized 3-connectivity of the Mycielskian of a graph G and the generalized 3-connectivity of G, and show that κ3(μ(G))≥κ3(G)+1. Moreover, by this result, we completely determine the generalized 3-connectivity of the Mycielskian of the tree Tn, the complete graph Kn and the complete bipartite graph Ka,b.

Keywords: Generalized 3-connectivity; Mycielskian of a graph; Tree; Complete graph; Complete bipartite graph (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318309792
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:347:y:2019:i:c:p:882-890

DOI: 10.1016/j.amc.2018.11.006

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:347:y:2019:i:c:p:882-890