Stability analysis of body force action models used in the single-relaxation-time single-phase lattice Boltzmann method
Gerasim V. Krivovichev
Applied Mathematics and Computation, 2019, vol. 348, issue C, 25-41
Abstract:
The paper is devoted to the stability analysis of the body force action models, used in the lattice Boltzmann method. The six widely used models are investigated. Only single-phase fluids are considered. Stability investigation is based on the application of the von Neumann method to the linear approximation of the system of the nonlinear lattice Boltzmann equations. An analysis is realized by the construction of the stability domains in the parameter space. The integral characteristics in dependence on the relaxation time are investigated. The rotation of the body force vector to the flow direction on some angle is considered. It is demonstrated, that the force provides a stabilizing effect if it acts in the opposite direction to the velocity vector. As the main result of the analysis of the stability domains, it is demonstrated, that the better stability properties take place for the implicit model. In the class of the explicit models, the exact difference method is preferable.
Keywords: Lattice Boltzmann method; Body force action; Stability (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318310300
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:348:y:2019:i:c:p:25-41
DOI: 10.1016/j.amc.2018.11.056
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().