EconPapers    
Economics at your fingertips  
 

Numerical approximations to a fractional Kawarada quenching problem

Matthew A. Beauregard

Applied Mathematics and Computation, 2019, vol. 349, issue C, 14-22

Abstract: A numerical approximation is developed, analyzed, and investigated for quenching solutions to a degenerate Kawarada problem with a left and right Riemann-Liouville fractional Laplacian over a finite one dimensional domain. The numerical analysis provides criterion for the numerical approximations to be monotonic, nonnegative, and linearly stable throughout the computation. The numerical algorithm is used to develop an experimental scaling law relating the critical quenching domain size to the order of fractional derivative. Additional experiments indicate that imbalanced left and right derivative transport coefficients can attenuate or prevent quenching from occurring.

Keywords: Kawarada; Quenching; Fractional derivatives (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318310816
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:349:y:2019:i:c:p:14-22

DOI: 10.1016/j.amc.2018.12.029

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:349:y:2019:i:c:p:14-22