EconPapers    
Economics at your fingertips  
 

Galerkin spectral method for nonlinear time fractional Cable equation with smooth and nonsmooth solutions

Haiyu Liu and Shujuan Lü

Applied Mathematics and Computation, 2019, vol. 350, issue C, 32-47

Abstract: In this work, we study the numerical solutions of the time fractional Cable equations with nonlinear term, where the fractional derivatives are described in Riemann–Liouville sense. An explicit scheme is constructed based upon finite difference method in time and Legendre spectral method in space. Stability and convergence of scheme are proved rigorously. Moreover, an improved algorithm for the problem with nonsmooth solutions is proposed by adding correction terms to the approximations of first-order derivative, fractional derivatives and nonlinear term. Numerical examples are given to support theoretical analysis.

Keywords: Nonlinear fractional cable equation; Legendre spectral method; Stability; Convergence; Nonsmooth solutions (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318311330
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:350:y:2019:i:c:p:32-47

DOI: 10.1016/j.amc.2018.12.072

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:350:y:2019:i:c:p:32-47