Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade
Joseph Chang Lun Chan,
Chee Pin Tan,
Hieu Trinh,
Md Abdus Samad Kamal and
Yeong Shiong Chiew
Applied Mathematics and Computation, 2019, vol. 350, issue C, 78-92
Abstract:
Existing sliding mode observer (SMO) schemes for fault reconstruction in descriptor systems require stringent conditions, or do not consider disturbances which can corrupt the reconstruction. In this paper, we present a two-observer scheme that overcomes these limitations by treating certain states as unknown inputs, thereby formulating a reduced-order infinitely observable system. A SMO is implemented onto this system to reconstruct certain faults, and its switching feedback term is fed into another SMO to reconstruct the remaining faults. Linear matrix inequalities (LMIs) are used to design observer gains in order to minimise the L2 gain of the disturbances on the fault reconstruction. The existence conditions of the scheme are investigated and are found to be less restrictive than those from other schemes in the literature, and thus the scheme is applicable to a wider class of systems compared to existing schemes. Finally, a simulation example demonstrates the efficacy of the proposed scheme.
Keywords: Descriptor systems; Fault reconstruction; Estimation; Sliding mode observers (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318311329
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:350:y:2019:i:c:p:78-92
DOI: 10.1016/j.amc.2018.12.071
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().