EconPapers    
Economics at your fingertips  
 

An instance-based learning recommendation algorithm of imbalance handling methods

Xueying Zhang, Ruixian Li, Bo Zhang, Yunxiang Yang, Jing Guo and Xiang Ji

Applied Mathematics and Computation, 2019, vol. 351, issue C, 204-218

Abstract: Imbalance learning is a typical problem in domain of machine learning and data mining. Aiming to solve this problem, researchers have proposed lots of the state-of-art techniques, such as Over Sampling, Under Sampling, SMOTE, Cost sensitive, and so on. However, the most appropriate methods on different learning problems are diverse. Given an imbalance learning problem, we proposed an Instance-based Learning (IBL) recommendation algorithm to present the most appropriate imbalance handling method for it. First, the meta knowledge database is created by the binary relation 〈data characteristic measures-the rank of all candidate imbalance handling methods〉 of each data set. Afterwards, when a new data set comes, its characteristics will be extracted and compared with the example in the knowledge database, where the instance-based k-nearest neighbors algorithm is applied to identify the rank of all candidate imbalance handling methods for the new dataset. Finally, the most appropriate imbalance handling method will be derived through combining the recommended rank and individual bias. The experimental results on 80 public binary imbalance datasets confirm that the proposed recommendation algorithm can effectively present the most appropriate imbalance handling method for a given imbalance learning problem, with the hit rate of recommendation up to 95%.

Keywords: Instance-based learning; Imbalance learning; Multi-label learning; Meta-learning (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300318310671
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:351:y:2019:i:c:p:204-218

DOI: 10.1016/j.amc.2018.12.020

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:351:y:2019:i:c:p:204-218