EconPapers    
Economics at your fingertips  
 

More on geometry of Krein space C-numerical range

Alexander Guterman, Rute Lemos and Graça Soares

Applied Mathematics and Computation, 2019, vol. 352, issue C, 258-269

Abstract: For n × n complex matrices A, C and H, where H is non-singular Hermitian, the Krein space C-numerical range of A induced by H is the subset of the complex plane given by {Tr(CU[*]AU):U−1=U[*]} with U[*]=H−1U*H the H-adjoint matrix of U. We revisit several results on the geometry of Krein space C-numerical range of A and in particular we obtain a condition for the Krein space C-numerical range to be a subset of the real line.

Keywords: Krein space C-numerical range; Indefininte inner product; J−Hermitian matrix (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319300384
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:352:y:2019:i:c:p:258-269

DOI: 10.1016/j.amc.2019.01.029

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:352:y:2019:i:c:p:258-269