EconPapers    
Economics at your fingertips  
 

A modified perturbation solution to the one-dimensional Bratu problem

Mina B. Abd-el-Malek, Amr Abdelrazek, Mohammed Ghazy and Gehad Gamal

Applied Mathematics and Computation, 2019, vol. 354, issue C, 296-304

Abstract: An approximate analytical solution to the one-dimensional Bratu boundary value problem is introduced in this paper. The solution is based on some perturbation expansion methods. The first step is taken from the linearized perturbation technique which was developed to solve initial value problem with a nonlinear term and no small parameter. An artificial small parameter is embedded and the dependent variable can then be expanded in terms of this parameter. However, necessary modifications are introduced to implement some techniques to solve a boundary value problem in order to allow for different nonlinearities. The current solution showed good convergence at any value of the Bratu constant, when compared with the exact lower branch of the solution to the one-dimensional Bratu problem. Also its recursive nature allows for more iterations and adding more correction terms to the final approximate solution which increases the accuracy.

Keywords: Perturbation method; Bratu problem; Nonlinear boundary value problem (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319301304
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:354:y:2019:i:c:p:296-304

DOI: 10.1016/j.amc.2019.02.026

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:296-304