EconPapers    
Economics at your fingertips  
 

Numerical dynamics of integrodifference equations: Basics and discretization errors in a C0-setting

Christian Pötzsche

Applied Mathematics and Computation, 2019, vol. 354, issue C, 422-443

Abstract: Besides being interesting infinite-dimensional dynamical systems in discrete time, integrodifference equations successfully model growth and dispersal of populations with nonoverlapping generations, and are often illustrated by simulations. This paper points towards and initiates a mathematical foundation of such simulations using generic methods to numerically discretize (and solve) integral equations. We tackle basic properties of a flexible class of integrodifference equations, as well as of their collocation and degenerate kernel semi-discretizations on the state space of continuous functions over a compact domain. Moreover, various estimates for the global discretization error are provided. Numerical simulations illustrate and confirm our theoretical results.

Keywords: Integrodifference equation; Collocation method; Degenerate kernel method; Piecewise linear splines; Global discretization error (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319301377
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:354:y:2019:i:c:p:422-443

DOI: 10.1016/j.amc.2019.02.033

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:354:y:2019:i:c:p:422-443