EconPapers    
Economics at your fingertips  
 

A numerical scheme for solving a class of logarithmic integral equations arisen from two-dimensional Helmholtz equations using local thin plate splines

Pouria Assari, Fatemeh Asadi-Mehregan and Salvatore Cuomo

Applied Mathematics and Computation, 2019, vol. 356, issue C, 157-172

Abstract: This paper presents a numerical method for solving logarithmic Fredholm integral equations which occur as a reformulation of two-dimensional Helmholtz equations over the unit circle with the Robin boundary conditions. The method approximates the solution utilizing the discrete collocation method based on the locally supported thin plate splines as a type of free shape parameter radial basis functions. The local thin plate splines establish an efficient and stable technique to estimate an unknown function by a small set of nodes instead of all points over the solution domain. To compute logarithm-like singular integrals appeared in the method, we use a particular nonuniform Gauss–Legendre quadrature rule. Since the scheme does not require any mesh generations on the domain, it can be identified as a meshless method. The error estimate of the proposed method is presented. Numerical results are included to show the validity and efficiency of the new technique. These results also confirm that the proposed method uses much less computer memory in comparison with the method established on the globally supported thin plate splines. Moreover, it seems that the algorithm of the presented approach is attractive and easy to implement on computers.

Keywords: Helmholtz equation; Logarithmic integral equation; Discrete collocation method; Local thin plate spline; Meshless method; Error analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319302498
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:356:y:2019:i:c:p:157-172

DOI: 10.1016/j.amc.2019.03.042

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:356:y:2019:i:c:p:157-172