EconPapers    
Economics at your fingertips  
 

A new fast method of solving the high dimensional elliptic eigenvalue problem

Ruihao Huang and Lin Mu

Applied Mathematics and Computation, 2019, vol. 356, issue C, 338-346

Abstract: In this paper, we develop a novel method to solve the elliptic eigenvalue problem. The univariate multi-wavelet approach provides a simple diagonal preconditioner for second order elliptic problems, which gives an almost constant condition number for efficiently solving the corresponding linear system. Here, we shall consider a new fast numerical approach for approximating the smallest elliptic eigenvalue by using the multi-wavelet basis in the multi-grid discretization scheme. Moreover, we develop a new numerical scheme coupled with sparse grids method in the calculation. This new approach saves storage in degrees of freedom and thus is more efficient in the computation. Several numerical experiments are provided for validating the proposed numerical scheme, which show that our method retains the optimal convergence rate for the smallest eigenvalue approximation with much less computational cost comparing with ’eigs’ in full grids.

Keywords: Multi-grid discretization; Riesz basis; Multi-wavelet; Elliptic Eigenvalue; Sparse grids (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319302425
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:356:y:2019:i:c:p:338-346

DOI: 10.1016/j.amc.2019.03.035

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:356:y:2019:i:c:p:338-346