Comparison between the non-self-centrality number and the total irregularity of graphs
Zikai Tang,
Hechao Liu,
Huimin Luo and
Hanyuan Deng
Applied Mathematics and Computation, 2019, vol. 361, issue C, 332-337
Abstract:
The non-self-centrality number and the total irregularity of a connected graph G are defined as N(G)=∑|εG(vi)−εG(vj)| and irrt(G)=∑|degG(vj)−degG(vi)|, with summations embracing all pairs of vertices, degG(vi) and ɛG(vi) denoting the degree and eccentricity of the vertex vi. In this paper, we show that there exists a graph G with diameter d such that irrt(G) > N(G) for any integer d ≥ 2. This gives a complete proof of Theorem 10 in Xu et al. (2018), where Xu et al. did not prove it really for d ≥ 4. Moreover, we prove that N(T) > irrt(T) for any tree T of order n ≥ 10 with diameter d≥2+2611n and maximum degree 4 avoiding degree 3, determine all trees(unicyclic graphs) and with diameter 3 and irrt(T) > N(T) and give a sufficient condition for trees with diameter 4 and irrt(T) > N(T). These partially solve Problems 26 and 27 in the above-mentioned literature.
Keywords: Degree; Eccentricity; Total irregularity; Non-self-centrality number (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319304564
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:361:y:2019:i:c:p:332-337
DOI: 10.1016/j.amc.2019.05.054
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().