EconPapers    
Economics at your fingertips  
 

A family of Hager–Zhang conjugate gradient methods for system of monotone nonlinear equations

Mohammed Yusuf Waziri, Kabiru Ahmed and Sabi’u, Jamilu

Applied Mathematics and Computation, 2019, vol. 361, issue C, 645-660

Abstract: This paper presents two modified Hager–Zhang (HZ) Conjugate Gradient methods for solving large-scale system of monotone nonlinear equations. The methods were developed by combining modified forms of the one-parameter method by Hager and Zhang (2006) and the hyperplane projection technique. Global convergence and numerical results of the methods are established. Preliminary numerical results show that the proposed methods are promising and more efficient compared to the methods presented by Mushtak and Keyvan (2018) and Sun et al. (2017).

Keywords: Nonlinear equations; Eigenvalue analysis; Hyperplane projection method; Monotonicity property; Global convergence (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319304771
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:361:y:2019:i:c:p:645-660

DOI: 10.1016/j.amc.2019.06.012

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:361:y:2019:i:c:p:645-660