EconPapers    
Economics at your fingertips  
 

Efficient energy-preserving methods for charged-particle dynamics

Ting Li and Bin Wang

Applied Mathematics and Computation, 2019, vol. 361, issue C, 703-714

Abstract: In this paper, energy-preserving methods are formulated and studied for solving charged-particle dynamics. We first formulate the scheme of energy-preserving methods and analyze its basic properties including algebraic order and symmetry. Then it is shown that these novel methods can exactly preserve the energy of charged-particle dynamics. Moreover, the long time momentum conservation is studied along such energy-preserving methods. Two numerical experiments are carried out to illustrate the notable superiority of the new methods in comparison with the popular Boris method in the literature.

Keywords: Charged particle dynamics; Energy-preserving methods; Long-time conservation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319304874
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:361:y:2019:i:c:p:703-714

DOI: 10.1016/j.amc.2019.06.022

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:361:y:2019:i:c:p:703-714