Homogenization of the vibro–acoustic transmission on perforated plates
E. Rohan and
V. Lukeš
Applied Mathematics and Computation, 2019, vol. 361, issue C, 821-845
Abstract:
The paper deals with modelling of acoustic waves which propagate in inviscid fluids interacting with perforated elastic plates. The plate can be replaced by an interface on which transmission conditions are derived by homogenization of a problem describing vibroacoustic fluid-structure interactions in a transmission layer in which the plate is embedded. The Reissner-Mindlin theory of plates is adopted for periodic perforations designed by arbitrary cylindrical holes with axes orthogonal to the plate midplane. The homogenized model of the vibroacoustic transmission is obtained using the two-scale asymptotic analysis with respect to the layer thickness which is proportional to the plate thickness and to the perforation period. The nonlocal, implicit transmission conditions involve a jump in the acoustic potential and its normal one-side derivatives across the interface which represents the plate with a given thickness. The homogenized model was implemented using the finite element method and validated using direct numerical simulations of the non-homogenized problem. Numerical illustrations of the vibroacoustic transmission are presented.
Keywords: Vibro-acoustic transmission; Perforated plate; Thin layer; Two scale homogenization; Helmholtz equation; Finite element method (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319304709
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:361:y:2019:i:c:p:821-845
DOI: 10.1016/j.amc.2019.06.005
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().