EconPapers    
Economics at your fingertips  
 

The maximal geometric-arithmetic energy of trees with at most two branched vertices

Yanling Shao and Yubin Gao

Applied Mathematics and Computation, 2019, vol. 362, issue C, -

Abstract: Let G be a graph of order n with vertex set V(G)={v1,v2,…,vn} and edge set E(G), and d(vi) be the degree of the vertex vi. The geometric-arithmetic matrix of G, recently introduced by Rodríguez and Sigarreta, is the square matrix of order n whose (i, j)-entry is equal to 2d(vi)d(vj)d(vi)+d(vj) if vivj ∈ E(G), and 0 otherwise. The geometric-arithmetic energy of G is the sum of the absolute values of the eigenvalues of geometric-arithmetic matrix of G. In this paper, we characterize the tree of order n which has the maximal geometric-arithmetic energy among all trees of order n with at most two branched vertices.

Keywords: Tree; Geometric-arithmetic index; Geometric-arithmetic energy (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319305077
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:362:y:2019:i:c:13

DOI: 10.1016/j.amc.2019.06.042

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:362:y:2019:i:c:13