EconPapers    
Economics at your fingertips  
 

Graph entropy based on the number of spanning forests of c-cyclic graphs

Pengfei Wan, Jianhua Tu, Matthias Dehmer, Shenggui Zhang and Frank Emmert-Streib

Applied Mathematics and Computation, 2019, vol. 363, issue C, -

Abstract: Graph entropies have been introduced to quantitatively measure the structural information content of graphs and networks; they have plenty of applications in various fields. Utilizing the number of subgraphs to establish measures for determining the complexity of molecular graphs are also prevalent in the study of mathematical chemistry. In this paper, we develop a new graph entropy measure that is based on the number of spanning forests. We prove explicit expressions for the entropy for trees, unicyclic and bicyclic graphs, and show that the cycle graph Cn attains the maximal value of the entropy for unicyclic graphs with order n and large cycle lengths. Based on generating numerical results, we conjecture extremal unicyclic graphs with respect to the entropy as well as we compare the values of our entropy for c-cyclic graphs, and generate graphs of bicyclic graphs and tricyclic graphs with 6 vertices for performing further research.

Keywords: Graph entropy; Subgraph; Spanning forest (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319306083
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:363:y:2019:i:c:26

DOI: 10.1016/j.amc.2019.124616

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:363:y:2019:i:c:26