Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation
Yang Chen,
Jakub Sikorowski and
Mengkun Zhu
Applied Mathematics and Computation, 2019, vol. 363, issue C, -
Abstract:
We propose a novel parallel numerical algorithm for calculating the smallest eigenvalues of highly ill-conditioned Hankel matrices. It is based on the LDLT decomposition and involves finding a k × k sub-matrix of the inverse of the original N × N Hankel matrix HN−1. The computation involves extremely high precision arithmetic, message passing interface, and shared memory parallelisation. We demonstrate that this approach achieves good scalability on a high performance computing cluster (HPCC) which constitutes a major improvement of the earlier approaches. We use this method to study a family of Hankel matrices generated by the weight w(x)=e−xβ, supported on [0, ∞) and β > 0. Such weight generates a Hankel determinant, a fundamental object in random matrix theory. In the situation where β > 1/2, the smallest eigenvalue tends to 0 exponentially fast. If β < 1/2, which is the situation where the classical moment problem is indeterminate, then the smallest eigenvalue is bounded from below by a positive number. If β=1/2, it is conjectured that the smallest eigenvalue tends to 0 algebraically, with a precise exponent. The algorithm run on the HPCC producing a fantastic match between the theoretical value of 2/π and the numerical result.
Keywords: Random matrix; Parallel eigensolver; Extremely ill-conditioned Hankel matrices; Smallest eigenvalue (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319306204
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:363:y:2019:i:c:42
DOI: 10.1016/j.amc.2019.124628
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().