EconPapers    
Economics at your fingertips  
 

QuickhullDisk: A faster convex hull algorithm for disks

Linh Kieu Nguyen, Chanyoung Song, Joonghyun Ryu, Phan Thanh An, Nam-Dũng Hoang and Deok-Soo Kim

Applied Mathematics and Computation, 2019, vol. 363, issue C, -

Abstract: Convex hull is one of the most fundamental constructs in geometry and its construction has been extensively studied. There are many prior works on the convex hull of points. However, its counterpart for weighted points has not been sufficiently addressed despite important applications. Here, we present a simple and fast algorithm, QuickhullDisk, for the convex hull of a set of disks in R2 by generalizing the quickhull algorithm for points. QuickhullDisk takes O(nlog n) time on average and O(mn) time in the worst case where m represents the number of extreme disks which contribute to the boundary of the convex hull of n disks. These time complexities are identical to those of the quickhull algorithm for points in R2. Experimental result shows that the proposed QuickhullDisk algorithm runs significantly faster than the O(nlog n) time incremental algorithm, proposed by Devillers and Golin in 1995, particularly for big data. QuickhullDisk is approximately 2.6 times faster than the incremental algorithm for random disks and is 1.2 times faster even for the disk sets where all disks are extreme. This speed-up is because the basic geometric operation of the QuickhullDisk algorithm is a predicate for the location of a point w.r.t. a line and is much faster than that of the incremental algorithm. The source code of QuickhullDisk is freely available from Mendeley Data and a GUI-version from Voronoi Diagram Research Center, Hanyang University (http://voronoi.hanyang.ac.kr/).

Keywords: Weighted points; Incremental algorithm; Quicksort; Quickhull; Voronoi diagram; Divide and conquer (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319306186
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:363:y:2019:i:c:47

DOI: 10.1016/j.amc.2019.124626

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:363:y:2019:i:c:47