The r-Hamming gap and distance-gap-preserving mappings from binary vectors to permutations
Chao Wang,
Hua Wang and
Yuzhi Zhang
Applied Mathematics and Computation, 2020, vol. 365, issue C
Abstract:
The well known Hamming distance between a pair of permutations (or strings) of the same length is simply the number of pairs of different digits in these permutations. It has been an interesting topic of research to find mappings from the binary vectors to permutations of the same length such that the Hamming distance is preserved or increased. As a natural variation we introduce the Hamming gap of radius r between two permutations, which is, in a way, equivalent to the number of digits where the corresponding pair of entries differ by at least r. This is called the r-Hamming gap. We first discuss the properties of this new concept. We then show mappings from binary vectors to permutations such that the images of a pair of binary vectors (at Hamming distance d) have r-Hamming gap at least d. We also show the generalization of our findings to permutations on Zn (where n ≡ 0) instead of [n].
Keywords: Hamming distance; Gap; Binary vectors; Permutations (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319306885
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:365:y:2020:i:c:s0096300319306885
DOI: 10.1016/j.amc.2019.124696
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().