EconPapers    
Economics at your fingertips  
 

Rainbow triangles in edge-colored Kneser graphs

Zemin Jin, Fang Wang, Huaping Wang and Bihong Lv

Applied Mathematics and Computation, 2020, vol. 365, issue C

Abstract: An edge-colored graph is called rainbow if all the edges have the different colors. The anti-Ramsey number AR(G, H) of a graph H in the graph G is defined to be the maximum number of colors in an edge-coloring of G which does not contain any rainbow H. In this paper, the existence of rainbow triangles in edge-colored Kneser graphs is studied. We give bounds for the anti-Ramsey number of triangles in Kneser graphs. Also, the anti-Ramsey number of triangles with an pendant edge is studied and the bounds are equal to bounds for triangles.

Keywords: Kneser graph; Rainbow triangle; Anti-Ramsey number (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319307167
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:365:y:2020:i:c:s0096300319307167

DOI: 10.1016/j.amc.2019.124724

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:365:y:2020:i:c:s0096300319307167