Efficient partitioned numerical integrators for myocardial cell models
Raymond J. Spiteri and
Wenxian Guo
Applied Mathematics and Computation, 2020, vol. 366, issue C
Abstract:
Cardiac simulations are often performed by numerically solving the bidomain or monodomain equations. In these simulations, much of the computational workload is devoted to the time integration of the systems of ordinary differential equations that arise from the myocardial cell models. For such time integration, a well-established top choice is the Rush–Larsen (RL) method, which partitions the myocardial cell models according to the gating and non-gating equations and treats them with the exponential Euler method and the forward Euler method, respectively. The partitioning strategy of the RL method is based on previous work by Moore and Ramon, with the main difference being that the Moore–Ramon (MR) method integrates the non-gating equations with Heun’s method, a two-stage, second-order explicit Runge–Kutta (ERK2) method. Although the RL method is less computationally expensive per step than the MR method, it should not be a foregone conclusion that the RL is more efficient. In this paper, we demonstrate that in the MR method typically outperforms the RL method in terms of efficiency. Furthermore, two new families of numerical methods are proposed based on the same partitioning strategy but integrating the non-gating equations with other ERK2 methods and multi-stage, first-order Runge–Kutta–Chebyshev methods, respectively. We show that the RL method is outperformed on 34 out of 36 cell models tested.
Keywords: Efficient numerical methods; Runge–Kutta–Chebyshev methods; Simulation of electrophysiological models; Rush–Larsen method (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319307301
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:366:y:2020:i:c:s0096300319307301
DOI: 10.1016/j.amc.2019.124738
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().