EconPapers    
Economics at your fingertips  
 

Matrix representations of multidimensional integral and ergodic operators

Anton A. Kutsenko

Applied Mathematics and Computation, 2020, vol. 369, issue C

Abstract: We provide a representation of the C*-algebra generated by multidimensional integral operators with piecewise constant kernels and discrete ergodic operators. This representation allows us to find the spectrum and to construct the explicit functional calculus on this algebra. The method can be useful in various applications, since many discrete approximations of integral and differential operators belong to this algebra. Some examples are also presented: (1) we construct an explicit functional calculus for extended Fredholm integral operators with piecewise constant kernels, (2) we find a wave function and spectral estimates for 3D discrete Schrödinger equation with planar, guided, local potential defects, and point sources. The accuracy of approximation of continuous multi-kernel integral operators by the operators with piecewise constant kernels is also discussed.

Keywords: Integral equations; Functional calculus; Schrödnger operator with defects; Operator algebras (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319308100
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:369:y:2020:i:c:s0096300319308100

DOI: 10.1016/j.amc.2019.124818

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:369:y:2020:i:c:s0096300319308100