EconPapers    
Economics at your fingertips  
 

On adjacency-distance spectral radius and spread of graphs

Haiyan Guo and Bo Zhou

Applied Mathematics and Computation, 2020, vol. 369, issue C

Abstract: Let G be a connected graph. The greatest eigenvalue and the spread of the sum of the adjacency matrix and the distance matrix of G are called the adjacency-distance spectral radius and the adjacency-distance spread of G, respectively. Both quantities are used as molecular descriptors in chemoinformatics. We establish some properties for the adjacency-distance spectral radius and the adjacency-distance spread by proposing local grafting operations such that the adjacency-distance spectral radius is decreased or increased. Hence, we characterize those graphs that uniquely minimize and maximize the adjacency-distance spectral radii in several sets of graphs, and determine trees with small adjacency-distance spreads. It transpires that the adjacency-distance spectral radius satisfies the requirements of a branching index.

Keywords: Adjacency-distance spectral radius; Adjacency-distance spread; Molecular descriptor; Branching index; Local grafting operation; Tree (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319308112
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:369:y:2020:i:c:s0096300319308112

DOI: 10.1016/j.amc.2019.124819

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:369:y:2020:i:c:s0096300319308112